Transcriptional regulation of early cerebral cortex development

Projet Dmrt2

The cerebral cortex is the most complex structure in the mammalian brain and the major site of our higher cognitive functions. It is made up of hundreds of distinct neuronal cell types organized into specific layers and areas. During cortex development, progenitor cell proliferation has to be tightly controlled and coordinated with differentiation, but how this is achieved remains poorly understood. It is known that transcription factors are involved, but the mechanisms by which they operate and interact with each other is largely unknown. Elucidating these mechanisms is essential to understand the function, evolution and disorders of the brain.

Dmrt5/Dmrta2 and Dmrt3 are zinc finger transcription factors strongly expressed in a similar graded manner in cortical progenitors that we have identified as key regulators of the growth and patterning of the mouse cerebral cortex. In humans, mutation in Dmrt5 have been associated with microlissencephaly. Despite their importance in corticogenesis, their mechanisms of action remain unknown. Our current work aims to better understand how they function together and interact with other cortical factors in the definition of the dorsal compartment of the telencephalon from which the cerebral cortex develops and how they contribute later to the delicate balance that control cortical progenitor maintenance and cell cycle exit/differentiation that is pivotal for proper brain development. Results of our work may uncover novel essential aspects of the molecular mechanisms of early cortical development and provide explanations to the microcephaly caused by Dmrt5 deficiency in man.

Epigenetic control of pain-sensing neuron differentiation and pain perception

Projet prdm

The detection of noxious or damaging stimuli is an ancient process that alerts living organisms to environmental dangers. Harmful stimuli activate receptors on specific sensory neurons called nociceptors, which mediate information transfer via the spinal cord to higher order processing centers resulting in protective behaviors and awareness of pain. Erroneous activation of the pain-sensing system, as in chronic or neuropathic pain, represents a major health burden with insufficient treatment options. In a recent study on genetic disorders rendering individuals unable to feel pain, several mutations have been identified in a novel candidate disease-causing gene, PRDM12. Prdm12 encodes an evolutionarily conserved zinc finger transcription factor that is strongly expressed in the developing and adult nervous system, including in the dorsal root ganglia that contain the cell bodies of the sensory neurons. Recent work of the laboratory has shown that Prdm12 is required for sensory neurogenesis in the frog. We are currently studying in mammals its role and mecanism of action in nociceptor genesis and in pain perception in the adult, using genetic approaches in the mouse and the identification of its in vivo targets. Emerging evidences link epigenetic mechanisms to chronic and neuropathic pain. Therefore, our studies on Prdm12 could contribute to the development of novel therapeutic options for pain relief.

Bellefroid Lab